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ABSTRACT

A speech coding processor architecture design study has been

performed in which the Texas Instruments TMS32010 has been selected from

among three commercially available digital signal processing integrated

circuits and evaluated in an implementation study of real-time Adaptive

Predictive Coding (APC). The TMS32010 has been compared with the AT&T Bell . "

Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most

suitable for a single chip implementation of APC. A preliminary system

design based on the TMS32010 has been performed, and several of the

hardware and software design issues are discussed. Particular attention

was paid to the design of an external memory controller which permits rapid

sequential access of external RAM. As a result, it has been determined

that a compact hardware implementation of the APC algorithm is feasible

based on the TMS320I0.
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1. INTRODUCTION

Recently, several digital signal processing integrated circuits

(DSPs) have become commercially available. These devices possess

significant computational capability and permit a variety of. peech

processing algorithms to be implemented in compact, low power systems. In - -

this report we summarize the results of a processor design study in which

the Texas Instruments (TI) TMS32010, the Nippon Electric Co. (NEC) UPD7720,

and the AT&T Bell Laboratories DSP I have been evaluated for the task of

implementing real-time Adaptive Predictive Coding (APC). We have surveyed

-the architectural features of these three DSPs and have compared and

contrasted their expected performance in implementing real-time APC.

Digital signal processors are typically benchmarked using some of the

more common signal processing algorithms such as digital filters and FFTs.

They are usually compared solely on the basis of the execution times of

these computations. Unfortunately, we have found that in evaluating DSPs

for real-time speech coding applications, these typical signal processing '.

benchmarks do not provide us with complete information. For this reason, we

have chosen to use an actual speech coding algorithm, real-time APC, as a

benchmark. The decision to use APC was based on a number of factors.

First, it is an algorithm of moderate to high complexity that requires a

processor with considerable numerical processing capability. In addition, -.

it requires a processor which can access an extensive amount of memory. It

therefore provides a reasonable indication of the processing power of a

particular digital signal processor. Secondly, it fits within the category

of medium- to low-bit rate speech coding algorithms which we are currently
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interested in implementing at Lincoln Laboratory. We postulate that a

DSP's ability to implement APC is reasonable assurance that comparable

algorithms could also be implemented on that DSP.

This report shall be organized as follows. In section 2, we describe

pertinent aspects of the APC algorithm as they relate to the algorithm's

implementation. In Section 3, we briefly review and compare the

architectural features of the three digital signal processors that we have

considered. In Section 4, we summarize a software/hardware implementation

of the APC algorithm based on the TMS32010.

2. ADAPTIVE PREDICTIVE CODING

In the present section, we briefly outline the fundamentals of the APC

algorithm. This discussion is intended to serve as a means of introducing

our own terminology and notation. We have chosen not to develop the theory

upon which the algorithm is based. For a more complete treatment of APC in

terms of its theoretical aspects, we refer the reader to a report by

Viswanathan, et al., [16J, which is a comprehensive review of the theory

and also describes several variations and improvements that have been made

upon the APC algorithm. For the purpose of this study, we have considered

the APC algorithm in its most basic form. This particular version of the

APC algorithm is similar in structure to the original proposed by Atal and

Schroeder [2]. A block diagram is shown in Fig. 1. Figures 1 (a) and (b)

are the APC analyzer and synthesizer, respectively. In the analyzer, two

predictors are employed for removing presumed redundancy in the input

speech signal and are arranged in a feedback loop surrounding a one-bit

quantizer. The predictor A(z) is a spectral predictor and is intended to .'""

2
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Fig. 1. Block diagrams of APC (a) analyzer and (b) synthesizer.
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remove the redundancy in the speech signal which is due to its

quasi-stationary spectral properties. The spectral predictor has the

polynomial transfer function

P
A(z) - ai z

- i  (1)

where the coefficients ai are the spectral predictor coefficients and the

parameter P is the prediction order. The spectral predictor coefficients

are obtained from linear prediction methods which will be outlined below..

The prediction order, P, is usually a specification of the particular

implementation and is typically equal to 4.

The second predictor, B(z), is the pitch predictor. It removes

redundancy in the speech signal that is due to the quasi-periodicity of

voiced sounds. The pitch predictor has the transfer function

B(z) = cz"T (2)

where a is the pitch prediction coefficient and T is the estimated pitch

period.

In the block diagram of Fig. 1, we show pitch prediction being

followed by spectral prediction. At sample n, the predicted speech signal,

s[n], is subtracted from the incoming speech signal, s[n], and the

resulting residual, d[n], is quantized, coded and transmitted to the

receiver. The quantized residual is also fed back within the analyzer

loop. In the receiver, the spectral prediction signal is computed first

and is added to the received residual before the pitch prediction signal.

The pitch prediction signal is then added in, and the resultant synthesized

4



speech signal is passed to a digital to analog converter for the

reconstruction of the analog speech signal.

The one-bit quantized residual fed back within the analyzer and the

decoded residual din] in the receiver are both unit variance signals and

are scaled by a multiplicative factor q. The factor q is an estimate of

the standard deviation of din] and forces the quantized residual signals in

both the analyzer and the receiver to be equal to the original residual,

d[n], with the addition of quantization noise.

The methods used to compute the APC side parameters a, T, ai and q

are understood by viewing the prediction operations in the time domain.

Removal of the pitch redundancy in the input speech signal can be written

as the difference equation

el[n] = sin] - as[n-T] (3)

in which the signal e1 [n] is referred to as the first residual. If the

signal s[n] were exactly periodic, and if T were computed without error,

the coefficient a would equal one, and the first residual would be

identically equal to zero. However, since speech is never exactly periodic

and since the pitch estimation process employed in APC does produce errors,

the first residual can never be identically zero in any practical sense.

Thus, once the pitch period has been determined, a is estimated in a manner

which minimizes the mean square energy in the first residual. This results

in the following expression for a, the normalized correlation coefficient

N-I s[nls[n-Tj 
L

N-I (4)
[ s[n-TJs[n-T]

n-0

5
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Computing the spectral predictor is actually the linear prediction

analysis problem. In this context, instead of performing the analysis on

the speech signal, linear predictive analysis is performed on the first

residual, el[n]. Linear prediction methods have been examined thoroughly

in the literature and several solutions to the resulting normal equations

have been proposed (see for example [10], 11], and [121 for solution

methods). In the implementation of APC given in this report, we have used

the autocorrelation method of solving the linear prediction normal

equations. Standard algorithms, such as Levinson's recursion and the

LeRoux-Gueguen recursion, which allow the predictor coefficients to be

obtained from the first P+1 autocorrelation values, have both been

considered.

The parameter q, as we have mentioned above, is an estimate of the

standard deviation of the residual d[n] and is used to scale the standard

deviation of the quantized residual din] in the analyzer and din] in the

receiver to the same level as din]. Thus, when the quantized residual is

used in the feedback loop in the analyzer, the reconstructed first residual

el[n] and the reconstructed speech sin] become equal to e1 [n] and r[n], the

first residual and speech signals in the receiver in the absence of

transmission errors. Note also that all of these signals will have been

degraded by the identical quantization noise introduced at the analyzer.

The pitch period, T, can be estimated using any number of methods in

APC. However, practical considerations permit only simple methods to be

employed and pitch errors will typically be introduced. This is not a

major disadvantage, however, since pitch errors do not severely degrade the

6
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:ransmission rates, we begin this summary of the algorithm's implementation

)y describing, in closer detail, the specifications of the APC algorithm

:hat we propose to implement. In Section 4.2 we give results of a critical

Loop timing study, and - describe a control strategy for fitting together

:he various software components of the APC algorithm. We have concluded

Erom this programming exercise, in which the critical loops of the APC

algorithm were coded in the actual TMS32010 instruction set, that the most

important consideration in designing the software for APC is the fashion in

which data is stored in memory. In section 4.3 we describe one possible

memory allocation scheme. We close our discussion of the APC implementation

by describing the hardware requirements. We have concluded from performing

a preliminary hardware design that the majority of the hardware design

effort must be directed towards providing a high speed interface with

memory external to the TMS32010, and to developing a method of

communicating with several external input/output devices under interrupt

control. The details of this preliminary hardware design are summarized in

Section 4.4.

4.1 Algorithm Specifications

In Section 2 we outlined the structure of the APC algorithm. The

structure described in Section 2 will support a range of data transmission

and speech sampling rates. The version of the APC algorithm chosen for

this study is intended to operate at a transmission rate of 9.6 Kbps and at

a sampling rate of 8000 samples/sec. The average frame duration is in-
9

tended to be 20 msec which corresponds to an analysis frame size of 1601

lNote that the frame duration is measured with respect to the S
transmission and receiver modem clocks which are asynchronous to the
sampling rate clock. Therefore, the analysis frame may deviate slightly

from the 160 sample nominal size.

20 9



implementation should require a minimal amount of hardware, the TMS32010

seems to be the best alternative among the three. Using the AMDF pitch

estimation computation as a comparison task, the Bell Labs DSP would

require the most extensive amount of external support hardware followed by

the NEC UPD7720 requiring an external memory controller and a control

microcomputer, and, lastly, the TMS32010 requiring just an external memory

controller.

In this section we have made comparisons of these DSPs based primarily

on their memory accessing capabilities. Another important distinguishing

feature which allows these DSPs to be compared is their capability for

providing foreground/background multi-tasking of computations. In this

respect, we require a DSP to have the ability to handle interrupts. As far

as satisfying this particular requirement, the Bell Labs DSP does not

support interrupts while the NEC UPD7720 and the TMS32010 do.

Based on the issues discussed in this section the TMS32010 is the

processor of choice among the three DSPs that we have evaluated for the

task of implementing APC. Although complete evaluations based on speech

coding algorithms other than APC have not been carried out, it is

reasonable to assert that the TMS32010 would be most appropriate for a

variety of other moderate complexity speech coding algorithms as well.

4. APC PROCESSOR DESIGN

For the remainder of this report, we shall summarize the results of

this APC processor design study by briefly describing one possible

hardware/software implementation of real-time Adaptive Predictive Coding

using the Texas Instruments TMS3200. Because the basic APC structure

described in Section 2 will support a variety of speech sampling and data

19



TMS32010 transfers data over its parallel 1/0 ports. Although both modes

of external memory access physically involve the data bus, the differences

between these two modes are important. Mode I memory transfers are

effected by executing a three machine cycle TBLl or TBL instruction in the

TMS32010. When executing these instructions, the contents of the CPU

accumulator are taken and used directly as the memory address. In mode II

memory transfers, a two machine cycle IN or OUT instruction is executed.

For these instructions the least significant three bits of the address bus - -

contain a port address which can be decoded externally to select one of

eight devices that are to send or receive data from the TMS32010 over the

data bus. When the I/0 ports are used for memory access, ROM/RAM addresses -.

must be provided externally. The trade-off between using these two modes

of memory I/0 is one made between hardware and software efficiencies.

Although the TBLR and TBILI instructions nominally require three machine

cycles to execute, extra machine cycles are typically required for saving

and restoring the contents of the accumulator which are involved in the

ongoing computation. As a result, instead of three machine cycles being

required for memory I/0, the amount of time often turns out to be on the

order of seven to eight machine cycles. On the other hand, memory I/O

involving the data ports is guaranteed to require no more than two machine

cycles. The disadvantage in the case of mode II is that external hardware

is needed for generating the required memory addresses.

3.4 Discussion and Summary

With ample external support hardware, any of these DSP integrated

circuits could be used to implement real-time APC. However, given that the

18
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5.

3.3 Texas Instruments TMS32010

The Texas Instruments TMS32010 effectively combines the high numerical

processing power of the NEC UPD7720 SPI with the control, data

manipulation, and storage capabilities previously found only in general -.

purpose microprocessors. A full description of the Texas Instruments

TMS32010 architecture is given in [151. We have highlighted some of its

features here. They include:

-a 1500 x 16-bit internal ROM,

-an external ROM/RAM memory address space of up to 4K words,

-a 144 x 16-bit internal RAM,

-eight 16-bit parallel 1/0 ports,

-a 200 nsec 16 x 16-bit parallel multiplier with a 32-bit

ALU/accumulator,

-a 200 nsec machine cycle time.

The most important advantage that the TMS32010 offers over the Bell

Laboratories DSP and the NEC pPD7720 SPI is its 12 bits of external memory

address space. A 16-bit word can be accessed from external ROM/RAM in two

to three machine cycle instructions. We have found that based on this

relatively short memory access time, the sum of the execution times of all

of the critical loops of the APC algorithm is less than a 20 msec frame

duration (see Section 4.2 below). Therefore, the APC algorithm could most

likely run in real-time in a single chip, ThS32010-based system.

The TMS32010 provides two modes of accessing off-chip me ry. In

mode I, the TMS32010 generates the necessary memory addresses internally,

and data is transferred over the 16-bit data bus. In mode II, the

17
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manipulating these internal memory pointers. This programming

inconvenience makes stream processing of data in the APC algorithm

preferable over the use of block processing methods, which would buffer

data needed for parameter computation in internal RAM.

Assuming data is to be processed in a stream fashion, we were able to

approximate the execution times of some of the critical ioops of the APC

algorithm. Assuming external control of the system data paths, as shown in

Fig. 2, approximately 4 Usec per 16-bit word are required to exchange data

with external memory [8]. If one adds these numbers up, the approximated

execution time of the AHOF pitch estimation algorithm is in excess of an

analysis frame duration. However, the execution times of the remaining APC

critical loops are each shorter than the assumed frame duration of 20 msec,

thereby making a NEC UPD7720 based implementation of real-time APC feasible

if an alternative pitch estimation algorithm to the AMDF method is used.

These results are particularly encouraging, since it has already been

demonstrated in the Lincoln Laboratory compact LPC vocoder that the more

sophisticated, but less memory intensive, Gold pitch estimation algorithm

can be programned to run in the NEC UPD7720 in real time.

From these observations it seems that a real-time implementation of

APC based on the NEC UPD772o SPI is feasible. The architecture of such a

system would most likely resemble the one shown in Fig. 2. Further

determination of the specific hardware and software complexity, such as the

exact number of NEC PD772 SPIs that would be required, has not been

undertaken and, of course, would be the next step. Instead, our attention

has been directed towards determining the feasibility of the Texas

Instruments TaS32O1e.

16



external RAM with a separate DMA controller. Both of these approaches have

been included in the architecture shown in Fig. 2. The DMA controller in

the system architecture is used to handle block (and stream) data transfers

between the SPIs and the external RAM, and the control microcomputer is

used to control the data flow between the SPIs.

In addition to the large amount of memory required, the computational

requirements of real-time APC also make it necessary that several SPIs be

used. We base this assumption on the distribution of the computational

load in the Lincoln Laboratory LPC vocoder design [7]. The real-time LPC

implementation, although requiring very little memory for data buffering,

requires three SPIs. The LPC and APC algorithms are of comparable

complexity and three NEC pPD7720 SPIs, or possibly more, will most likely

be necessary for APC.

When discussing the drawbacks of the Bell Labs DSP, we pointed out

that most of the processing time required for computing the APC critical

loops Is spent accessing external memory. AMDF pitch estimation was the

particular example cited. The Bell Labs DSP was ruled out because its I/0

structure was not conducive to extensive use of external memory. A similar

situation exists with the NEC VPD7720 SPI; however, it is less severe. The

NEC UPD7720 possesses an equal amount of internal RAM as the Bell Labs DSP,

and factors alluded to previously dictate that speech and other data be

stored in external memory. An additional factor which makes the use of the

NEC pPD7720 internal RAM undesirable is the internal memory pointer system

that the NEC UPD7720 provides. It was discovered when programming the NEC

PPD7720 for LPC [9] that a significant amount of overhead was devoted to .'

15
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Fig. 2. A typical system architecture employing the NEC 11PD7720.
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conventional microprocessor/controller, including an 8/16-bit parallel I/0

data port which attaches directly to a system data bus. The NEC UPD7720

allows this data port to be configured for DMA mode data transfers between

it and other system devices. This DMA capability ideally permits speech

and other data to be loaded into the NEC UPD7720 in 128 word blocks for

parameter computation (see discussion below).

A typical system architecture employing several NEC UPD7720 SPIs is

shown in Fig. 2. An architecture similar to this was implemented in the

Lincoln Laboratory compact LPC vocoder, and we assert that an APC

implementation based on the NEC pPD7720 SPI would also resemble the

architecture shown in Fig. 2. A conventional microprocessor is employed

as a system controller. In the figure, we have indicated that an Intel

8085 could serve in this function; however, a number of other %ommercially

available microprocessors could be used as well. The primary purpose of

the system controller is to manipulate the data paths among the multiple

NEC pPD7720 SPIs in the system.

Although we have shown an indefinite number of SPIs being deployed in

the system shown in Fig. 2, we can assume that at least two (most likely

three) SPIs will be needed to implement APC. As was true of the Bell Labs

DSP, the SPI possesses only 128 words of internal RAM which is insufficient

for the data buffering requirements of APC. However, since the data

throughput of the NEC pPD7720 SPI is considerably faster, it is possible to

spread the memory requirements among the several SPIs in the system and

have these devices pass data among themselves under the direction of a

system wide controller. Another alternative is to deploy a separate

13



. .. .. J • ., , •W U .->.- . . -. .: .- = - -

be read from external memory. Assuming that a frame consists of 160

samples and that 3 samples are skipped between summations, computing the

AMDF for a single value of T would require 2x40x6.4 sec or 0.51 mset.

Computing the AMDF for 60 values of T would require that 30.7 msec be spent

in memory I/O alone. This is in excess of common speech analysis frame

durations and, thus, demonstrates that using the Bell Labs DSP to implement

APC in this fashion is infeasible.

3.2 The Nippon Electric Co. pPD7720 Signal Processing Interface

The NEC UPD7720 Signal Processing Interface (SPI) has been used

previously at Lincoln Laboratory in a compact linear predictive vocoder

implementation [7]. The success experienced with the NEC pPD7720 in this

project prompted us to consider the NEC pPD7720 as a candidate for

implementing real-time APC. The NEC UPD7720 architecture is described in

[13] and features:

-a 512 x 23-bit program ROM,

-a 510 x 13-bit data coefficient ROM,

-a 128 x 16-bit data RAM,

-a 250 nsec 16 x 16-bit parallel multiplier which gives a 31-bit

result.

Although the NEC UPD7720 has several characteristics in common with

the Bell Labs DSP, significant advantages are apparent when the two DSPs

are ccmpared. These advantages include an enhanced I/0 structure,

interrupt service capabilities, and a 4-level stack which provides for up

to 4-level nesting of subroutines. The I/O structure contains several

features which enable the NEC UPD7720 to be easily interfaced with a

12
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APC implementation is the necessity for transferring speech and other data

between external memory and the limited on-chip RAM. The use of external

RAM is essential because the 128 word internal RAM that the DSP provides is

inadequate for storing the large speech buffers required for background

computation of the APC side parameters. The DSP allows external memory to

be substituted for the internal 1K program/coefficient RON through a

reconfiguration of the device and by using the multiplexed address/data bus

which is brought off-chip. Unfortunately, external RAM cannot be

substituted for the on-chip ROM because the DSP has no external memory

write capability that directly utilizes this data bus.

The architecture of the DSP supports serial I/O with external devices

through the use of asynchronous serial interface lines which could be used

for transferring data to an off-chip memory. However, there are two

problems associated with an approach which would utilize the serial data

ports for memory I/0. The first problem is that the serial lines must be

multiplexed between the memory and normal I/O devices, such as codecs and

modems that would ordinarily communicate with the DSP. This problem could

possibly be fixed by using external hardware that would arbitrate among

these sources of data. The second, more critical problem, is data

throughput. The following sample calculation determines the amount of time

that would be required for serial I/0 in computing an AMDF pitch estimate

and illustrates the nature of the data throughput problem. At the maximum

input clock rate, the DSP requires 400 nsec/bit to bring data on-chip.

Therefore, reading a 16-bit word from memory would require 6.4 Psec. For

each point in the AMDF summation, two speech samples, s[n] and sin-T], must

11 "-
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3.1 AT&T Bell Laboratories DSP I

The digital signal processing integrated circuit initially considered

in our study was the Bell Laboratories DSP I. The DSP has been

successfully employed in other moderate complexity mid-rate coders at Bell

Laboratories, such as Sub-band Coding 16] and ADPCM 14]. It therefore

became a candidate for implementing real-time APC.

A complete description of the Bell Labs DSP architecture can be found

in [5]. It features:

- a 1024 x 16 bit on-chip ROM for program and coefficient storage,

- a 128 x 20 bit on-chip data RAM,

- an extensive set of memory address registers and a separate address

arithmetic unit,

- an Arithmetic and Logic Unit which features a 16 x 20 bit multiplier

and a 40-bit accumulator.

The Bell Labs DSP architecture also features a great deal of

parallelism which permits its relatively slow 800 nsec machine cycle time

to be effectively reduced to 200 nsec by a 4-stage instruction pipelining

mechanism. However, instruction pipelining is not always possible in many

signal processing operations and is generally effective only in the type of

computations required of digital filters and correlators (i.e, register

transfers, multiplies and adds). Therefore, the Bell Laboratories DSP's

800 nsec cycle time is prohibitively slow for the implementation of many

signal processing algorithms such as autocorrelation coefficient

calculations and the other computations required in APC.

Aside from its relatively slow machine cycle time, we perceive that

the major problem involved in using the Bell Laboratories DSP for real-time

10
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properties of the auditory system [3). Other efforts have included the

development of various segmental quantization techniques that require that

the quantization gain term, q, be computed several times per frame (on the

order of 10) instead of just once as we have described [16]. The effect

here, also, is to better control the properties of the quantization noise.

Although including these techniques would strongly affect the execution of

APC in any of the processors evaluated in this study, we felt that

including them in the evaluation process would not provide further insight _.

in assessing the relative performances of the DSPs.

3. DSP SELECTION

Before the existence of digital signal processor integrated circuits,

DSPs employed in real-time signal processing architectures served primarily

as number-crunching peripherals. In these systems, conventional -

microprocessors (e.g., the Intel 8085 and the Motorola 68000) served as

central processing units Lhat controlled the flow of data throughout the

system and in and out of these peripherals. Although these implementations

have been relatively small in size, smaller configurations have become

possible by integrating more system control functions inside the DSP

itself.

For the remainder of this section we will review the architectures of

the AT&T Bell Laboratories DSP I, the Nippon Electric UPD7720, and the

Texas Instruments TMS32010. We shall focus on each DSP's on-chip memory

size and on the feasibility of supplementing this internal memory with
L

external RAM. Secondly, we shall focus on each DSP's system control

capabilities and evaluate its ability to manipulate the various data paths

in a system.

9
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2.1 Implementation Issues and Discussion

In a real-time implementation of APC, the side parameters T, a, ai, -

and q are usually computed as background tasks w 41e incoming speech is

pre-emphasized and buffered by foreground I/O handling routines. This

method of arranging the computations into background and foreground

routines immediately imposes several requirements on the DSP that is used

to implement the algorithm. The most obvious requirement is speed. In

order to process speech data in real time, the DSP must be capable of

executing a large number of machine instructions within the duration of a

speech analysis frame. Another important issue is the size of the memory

that the DSP either possesses on chip or can access externally. The memory

requirements are large because computing much of the APC algorithm in the

background demands that the speech data be double buffered. Multi-tasking

foreground and background routines also requires a DSP capable of

controlling a relatively large number of external I/O sources through the

use of an interrupt mechanism. In the following section we shall see how

these computational and control requirements of real-time APC translate

into DSP architectural requirements.

In this section we have summarized some basic aspects of the APC

algorithm. For the purpose of brevity, we have chosen not to describe

several of the measures taken which improve APC's performance. For

example, much of the research in Adaptive Predictive Coding has been

involved with improving the performance of the predictive quantizer loop.

These efforts include modifying the spectral predictor filter so that it

shapes the quantization noise in ways which better match the masking

8
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quality of the resynthesized speech in APC. In most APC implementations,

pitch period estimates are obtained using either autocorrelation analysis

or the average magnitude difference function (AMDF) [141. In the auto-

correlation method, the autocorrelation function is computed for each frame

of speech. The distance in lags between its peaks is taken as the pitch

estimate. In the AMDF method, the method most often employed in real-time

APC, the average magnitude difference function is substituted for the

autocorrelation function and is computed in a manner very similar to the

autocorrelation function for each frame of speech. The distance between

nulls in the AMDF is taken as the pitch estimate. In this study we have

used the AMDF method and have employed the following technique. To limit

the number of computations, only certain values of T, Ti, corresponding

to fundamental frequency values in the range from 50 to 400 Hz are used.

These values of Ti are precomputed and stored in a table. The AMDF,

D[Ti], rewritten as

DITij nLO1 sin] -sin-Till(5

is computed for each value of Ti. The value of Ti which gives the

minimum AMDF value is taken as the pitch estimate. Another measure often

taken to minimize the number of computations is to compute the AMDF

summation for every fourth sample of s[n] and s[n-T], skipping three

samples in between. We have also taken this step to minimize the

computation time.

7
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samples. The transmission frame size for this sampling rate is 192 bits

which are allocated among quantized residual and side parameters as shown

in Table I.

4.2 Critical Loop Timing and Control Strategy

The first step actually taken I. the evaluation of the THS32010 was a

critical loop timing study in which the various portions of the APC

algorithm were coded in the TMS32010 instruction set and approximate

execution times of the code were calculated. This critical loop timing

study was useful in obtaining two types of information. First, it has

given us some benchmark timing figures which could be used as an objective

measure for comparing the TMS32010 against the other digital signal

processing integrated circuits. Secondly, this timing data provided

information which was later used in decisions affecting the hardware

design.

Two versions of several of the critical loops were coded. In version

I of the code, TBLR and TBIL instructions were used to transfer data to and

from off-chip memory. In version II, the data port I/0 instructions, IN

and OUT, were used to transfer data to external RAM. We have summarized

the execution times of the software units in Table II. All of these

execution times are based on a 200 nsec machine cycle time. Listings of

the code written for these critical loops appear in the appendices. From

examining the execution times of the critical loops in Table II, it is

apparent that the code which incorporates the TBLR and TBLW mode of

external memory access could not execute within a 20 msec frame duration.
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TABLE I

BIT ALLOCATION PER FRAME

Bits!
Quantity Frame

d(nI Residual 157-

I.

T Pitch 6

a Pitch Predictor 4
Coefficient

q Quantizer 5

Level

k, 5

k2  Reflection 5

Coefficients
k3  5

5

TOTAL 192

E I.

22
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TABLE II

SUMMARY OF CRITICAL LOOP EXECUTION TIMES

OPERATION VERSION I VERSION II

Execution* % Real Execution* 2 Real
Time (msec) Time Titae (msec) Time

AMDF PITCH ESTIMATION 10.80-11.00 54.0-55.0 6.60 33.0

ALPHA CALCULATION .92 4.6 .62 3.1

Ist RESIDUAL CALCULATION 3.18 15.9 2.92 14.6
& LPC AUTOCORRELATION
ANALYSIS

REFLECTION COEFFICIENT .16 .8 .16 .8
CALCULATIONS

PREDICTIVE QUANTIZER 2.84 14.2 1.40-2.16 7.0-10.8

RECEIVER LOOP 2.00 10.0 1.60 8.0

ADC-DAC I/O 1.09-1.28 5.4-6.4 1.09-1.28 5.4-6.4

TRANSMIT MODEM 1.40 7.0 1.4 7.0
I/O HANDLER**

RECEIVE MODEM 1.40 7.0 1.4 7.0
I/O HANDLER**

TOTAL 23.79-24.18 119.0-120.9 17.19-18.14 86.0-90.7

*Execution time per frame
**These are foreground routines. Execution times were calculated by multiplying

the per sample execution times by the 160 sample frame size.
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Thus, if only one TMS32010 were used, we would not expect the algorithm to

execute in real time. One therefore would have to partition the APC

algorithm among two or more TMS32010 DSPs. On the other hand, if the I/O

ports are used for transferring data to external memory in conjunction with

external memory address generators, it seems possible that a single

TMS32010 would be all that is needed.

During our study we briefly examined the trade-offs between

implementing a single TMS32010-based APC processor versus one which .

incorporates two TMS32010 DSPs with version I of the APC software

partitioned. Although a dual TMS32010-based processor possesses

potentially more processing power, it ib difficult to make effective use of

it due to interprocessor communication overhead. In designing a dual

TMS32010 architecture, the first task is to find a reasonable partition of

the APC software between the two TMS32010 DSPs. The most straightforward

partition, a direct split between the analyzer and synthesizer, would

result in an unbalanced distribution of the computational load. The --

analyzer requires a significantly greater proportion of the computational

resources. In fact, given the execution times of the analyzer loops, it is

improbable that a single TMS32010 would be able to execute all of the

analyzer routines within the 20 msec frame duration. Therefore, a more

uniform partitioning of the APC algorithm, in terms of computational

requirements, is needed. This alternative has a more subtle drawback in

terms of data communication overhead. Although the APC analyzer software

can be segmented into several autonomous units, practically all of these

units process the same speech data. If these units are contained in

24
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separate TMS3201Os, then either entire speech buffers would have to be

passed among DSPs or each of the DSPs would have to access identical copies

of the same speech data. The first option entails a significant amount of

processing time being devoted to I/O among the processors. The second

option would require that either memory be shared or data be copied to both "-.-

TMS32010 processors. Both of these memory management schemes are unduly

complex.

After recognizing the difficulties involved in using a dual TMS32010

system, we decided not to pursue this effort and, instead, adopted the

single-chip design which uses the I/O ports for transferring data to

external memory. For the remainder of this section and the next, we

describe a software control strategy and external memory allocation for

this one chip design. We use the term, software control strategy, to refer

to the method used to combine software units. Our philosophy in adopting a

software control strategy in this APC implementation has been to relegate

as much of the computation to background tasks as possible. This allows

the foreground routines, which are executed upon interrupt from the

external I/0 sources, to be simple I/O handlers that merely control the

pointers required for buffering the data. In Table II, foreground routines

are identified with two asterisks.

The obvious disadvantage of computing the APC routines as background

routines is the overall increased demand for memory. However, as we shall

illustrate in the following section, the memory requirements of this APC

implementation fit safely within the confines of commercially available

RAMs.
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4.3 Memory Allocation

In Fig. 3 we show how memory is allocated among the APC software

units. A total of 2048 words of RAM are required and have been divided

among eight 256-word pages. The 256-word page size is used to accommodate

the use of 8-bit external address generators which are used as memory

pointers as described in the next section. Computing the analyzer routines

as background tasks normally requires that the incoming speech be double

buffered. Actually, triple buffering is used. The extra buffer, stored on

a separate page, is provided for storing the previous pitch period of

speech that is necessary in computing the pitch period estimate, T, the

pitch predictor coefficient, a, and the first residual signal, el[n].

During these calculations, the speech sample s[n-T] is needed and,

depending on the value of T, could reside on the previous pitch period

page. The two buffers of input speech used in these background

computations, the current processing frame and the previous pitch period,

are arranged contiguously on pages 0 and I so that the same 8-bit memory

pointer, with the addition of a 9th bit used for page crossing, can be used

to access these two pages of data as a single 512-word block. We have thus

eliminated the overhead in software involved in page crossing. The 9th bit

of the pointer to speech sample s[n-T] is set by the hardware when it

reaches the end of page 0. A separate pointer to the speech sample s[n] is

initialized to the bottom of page 1 and never crosses the 0/1 or the 1/2

page boundaries.

The reconstructed speech signals in the analyzer and synthesizer

(i.e., the state space of the recursive pitch prediction filters) are

26
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MEMORY.'-"-
MEOY FUNCTION

PAGE

0 PREVIOUS PITCH PERIOD
OF SPEECH DATA

CURRENT SPEECH
PROCESSING FRAME

2 RECONSTRUCTED SPEECH .
FOR ANALYZER PREDICTIVE

QUANTIZER LOOP

3 RECONSTRUCTED SPEECH
FOR SYNTHESIZER LOOP -

4 SPEECH INPUT BUFFER
FROM ADC

5 SYNTHESIZER OUTPUT
BUFFER NO. 1

6 SYNTHESIZER OUTPUT
BUFFER NO.2

7 DOUBLE BUFFERED RESIDUAL
OUTPUT (Analyzer)

DOUBLE BUFFERED RESIDUAL
INPUT (Synthesizer)

DOUBLE BUFFERED APC"
SIDE PARAMETERS

(Analyzer)

DOUBLE BUFFERED APC
SIDE PARAMETERS

2 (Synthesizer) .7.

Fig. 3. RAM allocation for APC implementation.
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stored in pages 2 and 3 which are implemented in hardware as circular

buffers. The 256-word buffer size is more than adequate for storing the

state space which has a maximum length of 160 points.

Since we have decided to compute the predictive quantizer and receiver

loops as background routines, the single bit/sample residual data must also

be double buffered, as do the APC side parameters. However, since this

residual data stream is serial, we can reduce its storage requirements by

packing it into 16-bit words. This data is stored on page 7, along with -: "

the APC side parameters.

We have eliminated the need in the analyzer for buffering the first

residual signal by combining the autocorrelation computation with the

calculation of the first residual signal. Through the use of a first-in

first-out buffer maintained in internal RAM (see code in the appendix) for

storing only P+ first residual values, we are able to compute the first

residual autocorrelation values that are necessary for computing the LPC

spectral predictor coefficients directly from the speech signal.

ROM is needed for storing program instructions and data constants.

Although we have not completely specified the amount of ROM which will be

needed, we have assumed that no more than 2048 words of ROM will be

required. The hardware implementation of both ROM and RAM will be

discussed in the following section.

4.4 Hardware Design

There are two principal features of the APC processor hardware. The

first is a high speed external memory interface circuit. This circuitry

provides two separate memory address generators which are operated under
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programmed control of the TMS32010. The second major feature is an

interface between the TMS32010 and four external I/O devices (the analog to

digital and digital to analog converters, the transmit modem, and the

receive modem). This interface allows the external devices to communicate

with the TMS32010 CPU on an interrupt basis. For the remainder of this

section, we outline our approach for designing the APC processor hardware.

A functional block diagram of an APC processor architecture is shown

in Fig. 4. In this figure, we have labeled the external memory controller

circuit and the external I/O interface portions of the architecture

explicitly. The architecture permits access to external memory from the

TMS32010 under the two modes described in the previous sections, using .

either the memory address bus in conjunction with the TBL1/W instructions

or the port address bus for faster access. The memory address bus is used

primarily for fetching program instructions and constants from ROM via mode

I. Under mode II, the data stored in locations 0-1023 of RAM are designed

to be accessible using the address generation logic which is contained in

the external memory controller circuitry. In order to retain maximum

flexibility, we have made all 2K of RAM accessible to the TMS32010 under

both modes by multiplexing the address bits input to the RAM devices.

The data ports can be thought of as eight physical ports which are

directly tied to the TMS32010. In actuality, data transfers involving the -

ports will utilize the data bus as well. A 3-bit port address (PAO-3) is

decoded and is used to select one of eight devices which is to send or

receive data from the TMS32010 over the bus. In the proposed system shown

in Fig. 4, three of the eight ports are used to interface the TMS32010 to
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external I/O devices. The I/O devices requiring separate ports are the

analog to digital converter (ADC), the digital to analog converter (DAC),
I

and the parallel to serial converter (PSC) which subsequently connects to a

serial transmit modem. We have been able to input data from the serial

receive modem without the use of an explicit I/O port. An additional port . -

is used to interface the TMS32010 with external interrupt control logic.

The other four ports are used to interface the TMS32010 with external RAM.

4.4.1 Hardware Design-External Memory Controller

Figure 5 is a more detailed schematic of the External Memory

Controller circuit. In this schematic we have shown explicitly the memory

I/O control signals which are generated by the TMS32010 CPU, the logic used

for decoding these signals, and the port/memory address bus. For flexi-

bility in the software design, external memory can be used as either a 4K

word block, consisting of both ROM and RAM to be accessed under mode I type

memory transfers (i.e., by executing TBLR and TBLW instructions), or as

separate ROM and RAM each consisting of 2K words. In mode II, the first 1K

words of RAM are accessed via the data I/0 ports in conjunction with the

external address generation logic which shall be described below. These

two modes of memory access are distinguished in the hardware by decoding ""-

the TMS32010 control signals IM, DEN, and WE, along with the memory

address bit All.

For the most part, mode I memory transfers are used primarily for

fetching program instructions and data constants from ROM. However, we

also must access pages 4 through 7 of RAM under mode I. For mode I, the 4K

Ji ,f memory has been partitioned into a lower 2K section of ROM and an
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upper 2K section of RAM. A simple 2-level hardware decoding of address bit

All distinguishes a read from ROM from a read from RAM. For a read

operation from ROM, the TMS32010 signal MEN will become active low, along

with address bit All. These two signals cause the ROK-KNAILE signal to

become active low, which is directly tied to the chip-select (CS) inputs of

the ROM devices. If a read from RAM is to take place, MEN will again be

active low, but All will be high since RAM is contained in the upper 2K

section of the memory address space. The address bit All is inverted and

combined with MEN to generate chip select signals for the RAM devices (see

Fig. 5).

Modes I and II memory transfers are distinguished by decoding the

address bit, All, along with the TMS32010 control signals WE and DIN.

These signals are both active low and are combined with All to generate a

PORT-EUABLE signal (also active low) which enables a 3-to-8 line decoding

of the port/address bus which is assumed to contain a valid 3-bit port

address. The decoder circuit signals to one of the eight devices tied to

its output lines to communicate with the THS32010 CPU over the data bus.

Two separate DMA controllers are being employed as external memory address

generators. In the schematic in Fig. 5, Advanced Micro Devices (AMD)

Am2940s [11 are used. These particular devices have been chosen primarily

because of their speed. The machine cycle time of the TMS32010 is

nominally 200 nsec, and a reasonable, but fast, access time for

commercially available RAMs is 50 nsec. According to the specifications

given for the Am2940, its propagation delay, combined with the delays of -

the other combinational logic in the external memory interface, provide
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tdequate time for data being accessed from RAM to settle on the data bus

efore the end of the TMS32010 memory read cycle. Similar time constraints
6

ire met for the memory write cycle.

The Am2940s are programmable and receive instructions from the

rMS32010 over the data bus via the port I/0 mechanism. One of the eight

data ports is dedicated entirely to providing initialization and other

instructions to the Am2940s. When this port is selected, the INIT signal

becomes active low (see Fig. 5) and the Am2940s receive instructions over
0

the data bus. The format of the data instructions which are given to the

Am2940s is described below.

Although the memory requirements of the APC algorithm are extensive,

an advantage that the algorithm provides is that memory access is primarily

sequential within a page. In other words, speech samples and other data

that are used within the same software routine will generally reside on the

same page and will be arranged sequentially within that page. This way,

after the DMA controllers have been programmed at the beginning of a

routine, there is little interaction between the TMS32010 CPU and the

address generators during the remainder of the routine's execution. In

addition, most of the computationally intensive signal processing routines

involve sequential data fetches from two memory locations. The Am2940

address generators will increment their present addresses after

an INC signal is generated by the Memory Sequencer circuit shown in

Fig. 5. The Memory Sequencer is a relatively simple Finite State Machine

(FSM) which ensures that the memory pointers to RAM are incremented by the

proper amount after each data transfer. Accessing the I/0 ports using -
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APPENDIX I (continued)

ZALS AMDF-L, 0If current AMDF is smaller
ADDH AMDF-H,0 make it the new minimum
SACL MIN-AMDF-L,O
SACH MIN-AMDF-H,0 -

ZALS *,ARO, 0
SACL T Save the present pitch value 0

SAME MAR *+,ARO Loop to next pitch value
ZALS NU*-PITCHS,VJ
SUB ONE,0
SACL NOM-PITCHS,O
BGEZ LOOP-i
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APPENDIX I

AMDF PITCH ESTIMATION - VERSION I

*!

* Computes a pitch estimate from one out of 60 values which are stored in a
* table in internal RAM. Assumes speech data to be stored in external RAM
* accessed using TBLR

INIT ZALS BIG-NUM-L,O
ADDH BIG-NUM-H ,0
SACL MIN-AMDF-L,O MIN-AMDF maintains min AMDF
SACH MIN-AMDF-H,0 value, init it to something large
LACK #60
SACL NUM-PITCHS,0 Num-Pitchs is loop counter

LARK AR5,#P-TBL-ADDR ARO points to pitch table

LOOP-i LACK #S-ADDRR Initialize pointers to speech
SACL S-PTR, 0 Data sin] and s[n-T]

SUB *,ARO,0 Compute pointer to sin-T] by
SACL ST-PTR,0 subtracting away current pitch

ZAC
SACL AMDF-L,O Initialize Accumulated AMDF
SACH AMDF-H,0 value
LARK ARO, #NUM-SAMPLES ARO is loop counter

LOOP-2 ZALS S-PTR, 0 Load ACC w/ pointer to sin]
TBLR S Read s[n]
ADD THREE, 0 Update pointer skipping
SACL S-PTR, 0 Three speech samples
ZALS ST-PTR, 0 Do same w/ s[n-T]
TBLR ST
ADD THREE, 0
SACL ST-PTR, 0

ZALS S, 0 Compute /sin] - s[n-T]/
SUB ST,O
ABS
ADD AMDF-L,0 Update AMDF value
ADD AMDF-H,15
SACL AMDF-L,0
SACH AMDF-H,O
MAR *-,ARI If not finished w/ current
BNAZ LOOP-2 pitch value, loop

ZALS MIN-AMDF-L,0 Compare current AMDF value with
ADDH MIN-AMDF-H,0 previous minimum

SUB AMDF-L,0
SUB AMDF-H, 15 If current is larger, loop

BLZ SAME to next pitch value
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which allowed us to obtain some benchmark timing figures which were used to

characterize the THS32010. These timing figures also helped us in making

some hardware decisions and allowed us to determine the approximate

hardware requirements.

There are several steps which can follow from this work. The most

logical step would be for the architecture outlined in Section 4 of this

report to be constructed. Although a preliminary hardware design was given

in this report, many of the details still need to be more fully developed.
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acknowledgment procedure as follows. The bit is reset by the TMS32010

after the contents of the ICR are read over one of the I/O ports and a word

is written back with the corresponding bit set to I.

5. SUMMARY

In this report we have given the results of an APC processor design

study. The system that we have proposed is based on the Texas Instruments

TMS32010. We began by outlining the basic features of the algorithm and

pointing out those aspects of the algorithm which make its implementation

challenging. The major problem associated with implementing APC in real

time is memory. We acknowledged the necessity of computing the APC side

parameters as background tasks which inherently requires an extensive -

amount of RAM.

As a part of this study, we examined two other DSPs besides the

TMS32010: the AT&T Bell Laboratories DSP I and the Nippon Electric

UPD7720 Signal Processing Interface. We have compared these DSPs against

the TMS32010. The Texas Instruments TMS32010 was determined to be most

suitable for a real time implementation of APC because of its speed, its

ability to perform the numerically intensive signal processing operations

required by APC, and its relatively sophisticated control features which

enable it to handle the memory addressing and I/O requirements of APC.

The objective of this study has been two-fold. We wanted to learn the

relative strengths and weaknesses of the three DSP ICs, and we wanted to

determine whether a compact implementation of APC and other moderate bit

rate speech coders of comparable complexity were feasible using the

TMS32010. Towards these ends a critical loop timing study was performed
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control register which will uniquely indicate the presence of an

interrupting device by one of its bits being set. The register is read by

the TMS32010 any time after the interrupt has occurred.

The I/O interface circuit is shown in Fig. 8. Buffer registers are

provided between the TMS32010 and the analog to digital converter (ADC) and'-

the digital to analog converter (DAC). These registers allow the data

transferred between the TMS32010 and these devices to be double buffered,

eliminating the need for the TMS32010 to be directly involved in any type

of handshaking procedure. A parallel to serial converter (PSC) is

provided between the transmit modem and the TMS32010. The parallel to

serial converter changes the parallel data output from TMS32010 into a

serial bit stream appropriate for the transmit modem. It also serves as a

data buffer as well.

The interrupt control register (ICR) is shown in Fig. 9. It

multiplexes three externally generated I/0 control signals on to the single

interrupt line of the TMS32010 through the use of a single logic gate.

These three control signals are the ADC/DAC sampling clock, the transmit 0-°

.60
modem clock, and the receive modem clock. The ICR is actually a 4-bit

register, with the fourth bit being used to store the serial input data

from receive modem. The ICR is implemented as a set of four D-latches. A

typical interrupt service scenario would proceed as follows. When one of

the external devices interrupts the TMS32010, the interrupt signal is

passed on directly to the THS32010 when the corresponding bit is set in the

ICR. A bit set in the ICR prohibits the interrupting device from

reinterrupting the TMS32010 until the bit is reset through an
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15 14113 11110 8 70

RAM ACCESS AM2940 AM2940 AM2940 DATA
MODE INSTRUCTION INSTRUCTION

ACCESS MODE MEMORY PAGE

BIT 1 BIT 0 AND FUNCTION

0 0 PAGESO0 & 1
(b) AMDF MODE ACCESS (R)

0 1 PAGESO0 & 1
NON AMDF MODE (R)

1 0 PAGE 2 (R/W)
1 I PAGE 3 (R/W)

Fig. 7 (a). External memory interface program instruction word.
(b) RAM access mode bits.
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the FSM will return to the IDLE state. If an AMDF pitch estimate is being

computed, the FSM will continue to its INCREMENT #2 and INCREMENT #3

states, incrementing the Am2940s three more times in the process.

The external memory interface circuit is programmed by issuing a

sequence of 16-bit instruction words over one of the I/O ports. Each

instruction word is broken into several fields which are labelled in Fig.

7(a). The least significant eight bits contain the initialization data for

the Am2940s (e.g., initial addresses, etc.). Bits 8 through 10 and 11

through 13 contain the Am2940 instructions, and bits 14 and 15 contain the

RAM access mode bits which are described in Fig. 7(b). A list of the

Am2940 program instructions is given in [1. The appropriate setting of

the RAM access mode bits indicates to the external memory controller which

memory page is to be accessed and the number of times the memory pointers

are to be incremented during each memory 1/0 cycle. The access mode bits

will control the setting of the R/V-FLG-1, R/W-FLG-2 and the ANDP-FLG

signals, which are output from the RAM Access Control Register and are

input to another register which selects pages 2 and 3 of RAM, and are also

input to the memory sequencer FSM. A table is provided in Fig. 7(b) that

summarizes the settings of the RAM access mode bits.

4.4.2 Hardware Design-I/O Interface Circuit

The second major task in the hardware design is to interface the four 7.

external 1/0 devices with the TMS32010. These external devices are to

communicate with the TMS32010 on an interrupt basis. Since the TMS32010

has only one interrupt line, the control signals output from these I/O

devices must be multiplexed. Our approach has been to design an interrupt
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either RAN-PORT-I or RA-PORT-2 causes both addresses to increment while an

access via RAM-PORT-O causes no incrementation. Thus, a typical

autocorrelation computation would require first reading sin] through

RAN-PORT-O and then reading s[n-i] through RAM-PORT-I or 2. Since address

incrementation occurs following the second read, subsequent data fetches

will access the proper data. All of the routines which access external

memory using the I/O ports have the memory pointers incremented once after

each transfer, the exception being the routine which computes the AMDF

pitch estimate. In this routine, three speech samples are skipped between

each point in the AMDF summation (see Eq. 5); and the -imory pointers must,

therefore, be incremented three times.

The state transition diagram for the memory sequencer FSM is shown in

Fig. 6. Shown in the figure are three inputs to the FSM, RA*-PORT-i,

RAM-PORT-2 and ANDF-FLG, in addition to the system clock. The output of

the FSM is an INC control signal which causes both of the Am2940 address

generators to increment their memory pointers. The memory sequencer FSM

steps through its sequence while the CPU is processing the data it has just

read, or, in the case of a memory write, while the CPU is preparing to

output another word to RAM. We have managed to save a considerable amount

of time by having these operations carried out concurrently. The memory

sequencer FSM normally sits in an idle state. After the CPU has finished

its read or write cycle, signalled by either the RAN-PORT-i or the

RAN-PORT--2 signals becoming inactive, the FSM will enter the INCREMENT #1

state. During the transition it generates the INC control signal which is

tied to both Am2940s. If the AMDF pitch estimation is not being performed,
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APPENDIX II

AMDF PITCH ESTIMATION - VERSION II

* Compute a pitch estimate from one of 60 values stored in a table in internal
* RAM. Assumes speech data to be stored in external RAM which is accessed via

*the data ports using the IN instruction. External memory interface is initial-
* * ized by a separate initialization routine.

INIT ZALS BIG-NUM-L,O Initialize minimum AMDF value to some

ADDH BIG-NUM-N,O big number
SACL MIN-AMDF-L,O
SACH MIN-AMDF-H,O

LACK #60 Initialize counter for number
SACL NUM-PITCHS,O of pitch values
LARK ARO,#P-TBL-ADDR Initialize ARO to point to pitch table
ZAC Clear RAM access control word
SACL ACCESS-CTR-WD,O to indicate AMDF mode in
CALL EXT-MEM-INIT initialization of external memory

interface

LOOP-I LACK #ADDR-S Init external pointers to sin] and s[n-T
SUB *,O,ARO Issue Reinitialization Instructions to
ADD REIN-INS,11 AM2940's
ADD LOAD-INS,8
SACL INSTR,0
OUT INSTR, INTRFC-PORT Output Instructions over Data

Port

LOOP-2 IN S, RAM-PORT-1 Read sin] and sin-T from external RAM
IN ST, RAM-PORT-2
ZALS S,0 Compute /sin]-sin-T] I
SUB ST,0
ABS

ADD AMDF-L,O Update AMDF Value
ADD AMDF-H,15
SACL AMDF-L,O

SACH AMDF-H,0
BIOZ LOOP-2 Use hardware to detect end of loop

ZALS MIN-AMDF-L,O Compare current AMDF value w/
ADDH MIN-AMDF-H,0 previous minimum
SUB AMDF-L,O
SUB AMDF-H,15
BLZ SAME
ZALS AMDF-L,0 If smaller, update minimum
ADDH AMDF-H,O
SACL MIN-AMDF-L,O
SACH MIN-AMDF-H,0

ZALS *,ARO Save present pitch value
SACL T,O
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APPENDIX II (continued)

SAME MAR *+ ,ARO
ZALS NUM-PITCHS,O
SUB ONE,"
SACL NUM-PITCH,0
BGEZ LOOP-i Loop if not finished

Ir.
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APPENDIX III

PITCH PREDICTION COEFFICIENT -VERSION I

*Compute the pitch prediction coefficient. Assumes speech is stored in external

RAM access using TBLR

INIT ZAC Initialize numerator and denominator
SACL NUM-L,O
SACH NUM-H,O
SACL DEN-L,0
SACH DEN-RIO
LACK #S-ADDR Initialize pointers to sin] sjw-Tj
SACL S-PTR,0
SUB T,0
SACL ST-PTR,0
LARK ARO, #N Initialize loop counter AR46

LOOP ZALS S-PTR
TBLR S Read stnj
ADD ONE, 0
SACL S-PTR, 0
ZALS ST-PTR, 0
TBLR ST Read sin--TI
ADD ONE
SACL ST-PTR-
ZALS NUM-L, 0
ADDH NUM-H,0
LT ST
MPY S
APAC
SACL NUM-L,O Update numerator-
SACH NUM-i, 0
ZALS DEN-L,0
ADDH DEN-H,0
MPY ST
APAC
SACL DEN-L,O Update denominator
SACH DEN-H, 0
MAR -,AR,6

BNAZ LOOP
CALL DIVIDE Perform divide in a subroutine -

ZACH QUOTIENT
SACH ALPHA Store result
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APPENDIX IV

PITCH PREDICTTION COEFFICIENT - VERSION II

* Compute pitch predictor coefficient a. Assume speech is stored in external RAM
* accessed via the I/0 ports using the IN instruction.

INIT ZAC Initialize numerator & denominator to
SACL NUM-L,O zero
SACH NUM-H,O
SACL DEN-L,0
SACH DEN-H,0
LACK #1 Initialize external memory interface
SACL ACCESS-CTR-WD,0 for Mode I type memory interface
CALL EXT-MEM-INIT

LOOP IN S Input sin] & s[n-Tl
IN ST
ZALS NUM-L,"
ADDH NUM-H,.
LT ST
riPY S
APAC
SACL NUM-L Update numerator
SACH NUM-H
ZALS DEN-L
ADDH DEN-H
MPY ST
APAC
SACL DEN-L,6 Update denominator
SACH DEN-H,.
BIOZ LOOP Detect end of loop in hardware
CALL DIVIDE
ZALH QUOTIENT, 0 Compute result and store it
SACH ALPHA,0

5
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APPENDIX V

COMBINED IST RESIDUAL AND AUTOCORRELATION COMPUTATION

* Computes 5 autocorrelation values along with the 1st residual direct
• from the speech signal. Assumes that speech is stored in external
• RAM and that it is accessed using TBLR

p
INIT LACK #S-ADDR Initialize pointers to speech

SACL S-PTR, 0 data
SUB T,O
SACL ST-PTR,0
LACK #N Initialize main loop counter
SACL COUNT, 0 p
LARK AR, #R-ADDR
LARK ARI, #ORDER

LOOP-4 SACL *+, ARO Initialize autocorrelation values
MAR *- ARI to zero
BNAC Loop-4 p

LOOP-I ZALS S-PTR,O
TBLR S Read sin]
SUB ONEo
SACL S-PTR,"

LT ALPHA -
ZALS ST-PTR,O
T9LR ST Read s[n-T]
SUB ONE,.
SACL ST-PTR,
ZALS S Compute el[n] - sini- s[n--Ti
MPY ST
SPAC Place el [in value on a First-in
LARK ARO, #e-ADDR first-out, stack which retains
SACL *, 0, ARO five most previous residuals values
LT *AR
LACK #ORDER Set up loop to compute correlation
SACL COR-COUNT, 0 values
LARK ARI, # -ADDR

Update, RO through R4
LOOP-2 ZALS *+,ARI,O values

ADDH *-,ARI,-
MPY *-,ARt,-
APAC
SACL *+,AR1,0
SACH *+,ARI,"
ZALS COR-COUNT,-

SUB ONE
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APPENDIX V (continued)

SACL COR-COUNT,0
BNEZ LOOP-2
LARK ARIO, #e4-ADDR. Reorder values in the residual FIFO
LARK ARi, #ORDER

Loop-3 DMDV *,R,
MAR *,R
BNAC LOOP-3
ZALS COUNT,O Update loop counter
SUB ONE,O
SACL COUNT,6
BNEZ LOOP-i REDO LOOP
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APPENDIX VI

LEROUX-GUEGUEN RECURSION FOR COMPUTING LPC PARCOR, COEFFICIENTS

LPC-INIT LACK #4 Set up pointers to transfer
SACL INIT-COUNTER,0 autocorrelation values to init recursion
LARK ARO, #ADDR-RO Point to R[01
LARK AR1, #ADDR-E0 Point to enIJl

INITLP-1 ZALS *+,ARO Auto correlations are double word
SACK *+,AR1 (use upper word only)
MAR *+,ARO, (skip a word)
ZALS INIT-COUNTER
SUB ONE,O
SACL INIT-COUNTER,
BNEZ INIT-LP-1

LACK #3 Load the other three autocor. values
SACL INIT-COUNTER
LARK ARO, #ADDR-Rl Aux registers pointed to data
LARK ARi, #ADDR-E-I

INIT-LP-2 ZALS *,R
SACL *-, AR , 0
MAR *+-,ARO skip word for double worded
ZALS INIT-COUNTER. autocorrelation
SACL INIT-COUNTER,O
BNEZ INIT-LP-2

INIT-PTRS LARK AR0, #ADDR. E-ARRAY init pointer to e1[p-2
SAR ARO, E-ARRAY-START
LARK ARO, #ADDR-k0 .O
SAR ARO, K-PTR
LACK #7 init number of iterations
SACL NUM-INTERATIONS,0
LARK ARgO, #ADDR-ENO mnit pointer to e(n)[0]
SAR AR*3, ENO-PTR
LARK AR0, #ADDR-EN1 mnit pointer to e~n)[r4ij
SMR AR0$, ENI-PTR

LG-REC LAR ARO,ENI-PTR
ZALS *4,ARO
SACL NUMERATOR
SAR ARO, ENT-PTR
LAR ARO, FNO6-PTR
ZALS *-ARO
SACL DENOMINATOR
CALA DIVIDE
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APPENDIX VI (continued)

ZALS QUOTIENT
LAR ARO,K-PTR
SACL *,ARO,
LT *+,ARO

SAR ARO, K-PTR
LARK ARO, #ADDR-E-END Init pointers for from data
LAR ARI, E-ARRAY- START
SAR Al, CROSS-PTR
LARK All, #ADDR-SCR-END Init ptr to put cway data

SAl All, TO-PTR ~
ZALS NUM-ITERATIONS
BEZ DONE
SACL LG-COUNTER

LG LOOP ZALS *+,ARO, 0 e~l)[i] Accumulator
LAX All, CROSS-PT& ~ ~ ~ )n1i
MPY *+, ARIk al

SPAC
SAX All, CROSS-PTR
LAR ARI, TO-PTR
SACL *+-, All,0
SAX All, TO-PTR
ZALS LG-COUNTER
SUB ONE
SACL LG-COUNTER,0
BNEZ LG-LOOP

ZALS NUM- ITERATIONS
SACL LG-COUNTER, 0
LARK AO, #ADDR-E-END

TERLP LARK
BALS *+-, ARI ,0
SACL *+, ARO, 0
ZALS LG-COUNTER
SLB ONE
SACL LG-COUNTER, 0
BNEZ TFR-LP
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APPENDIX VI (continued)

ZALS NUM-ITERATIONS
SUB ONE,0
SACL NUM-ITERATIONS,0
LAR ARO, E-ARBAY-START
MAR A
SAR ARO, E-ARRAY-START
B LG-REC
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APPENDIX VII

PREDICTIVE QUANTIZER LOOP - VERSION I

,S

" Assumes speech data as well as the pitch predictor state space

" is stored in external RAM. The pitch predictor state space is kept
" in a circular buffer which is accessed using TBLR and TBLW
" instructions

INIT ZALS N,
SACL COUNTER, 0 Initialize Loop Counter
ZALS #S-ADDR, Initialize Pointer to Incoming speech
SACL S-PTR

LOOP-I LARK ARO, #A-ADDR ARO points to predictor coefficients p
LARK ARI, # EI-ADDR ARI points to spectral filter
ZAC state space
LT *+, ARI Compute spectral predictor
MPY ARO

LOOP-2 LTD *+, ARI
MPY *+, ARO
BANZ LOOP-2

APAC
SACH Y, 0 Y contains Spectral Prediction
ZAC COMPUTE PITCH PREDICTION
LT ALPHA
MPY RT
APAC
SACH X, X K CONTAINS PITCH PREDICTION
ZALS S-PTR, "
TBLR S
ADD ONE, 0 p
SACL S-PTR, 0
ZALS S Subtract tw predictions from

SUB X, 0 input speech
SUB Y,.
BGEZ DIFF-POS Quantize residual, if neg.
ZAC transmit zero
SACL D, 0 Scale variance of quantized . --

LT 0 residual
MPYK MINUS-1
APAC
B UPDATE

DIFF-POS LACK ONE If residual is positive, transmit
SACL D, 0 one

ZALS Q, -
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APPENDIX VIJ. (continued)

UPDATE ADD Y, 0Compute spectral prediction filter
SACH state variable
ADD X,0
SACH R, 0 Compute Pitch Predictor State

variable and store it

ZALS R-OUT-PTR,O Compute pointer into circular buffer
ADD ONE,0 for storing data
SACL R-OUT-PTR,O
SUB R-BOTTGI,0
BLZ OUTPUT-R
LACK #ADDR-RBUF If at end of buffer, point
SACL back to beginning

OUTPUT-R ZAI.S R-OUT-PTR,0
TBLW R

ZALS R-IN-PTR, 0 Compute pointer into circular
ADD ONE, 0buffer for retrieving data
SACL R-IN-PTR,0
SUB R-BOTTOM,0
BLZ INPUT-R
LACK #ADDR-RBUF
SACL R-IN-PTR,0

INPUT-R ZALS R-IN-PTR,0
TBLR RT

ZALS COUNTER,0
SUB ONE
SACH COUNTER,0
BNEZ LOOP-i
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APPENDIX VIII

PREDICTIVE QUANTIZER LOOP -VERSION II-

* Assumes input speech and reconstructed speeech data to be stored
* in external RAM. The input speech is accessed using TBLR. The
* reconstructed speech is accessed using the I/0 ports and the exter-
* nal memory interface. The serial quantized residual signal is packed
* into 16-bit words.

INIT ZALS N,M0 Initialize loop counter
SACL COUNTER, 0
LACK #S-ADDR,0 Initialize Pointer to input speech
SACL S-PTR,0 data
LACK #D-ADDR
SACL D-OUT-PTR,0
ZALS THREE

SACL ACCESS-CTR-WD,O Initialize external memory
CALL EXT-MEM-INIT interface for read/write mode

LACK #16
SACL COUNTER, 0
ZAC BYTE
SACL RESIDUAL-BYTE ,O

Loop-I LARK ARO, #A-ADDR Compute spectral prediction
LARK ARI,#E1-ADDR

ZAC
LT *-,AR1
MPY *-,AR'

Loop-2 LTD *-,AR1
MPY *-,AR.
BANZ LOOP-2
APAC
SACH YO
ZAC Compute pitch prediction
LT ALPHA
MPY RT
APAC
SACH X,0
ZALS S-PTR,•
TBLR S-PTR Read input speech sample
ADD ONE, 0
SACL S-PTR
ZALS S
SUB X,0
SUB Y,0 Compute residual and quantize
BGEZ DIFF-POS
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APPENDIX VIII (continued)

ZAC p
SACL D,0 If quantized residual is negative
LT Q transmit zero
MPYK MINUS I
APAC
B UPDATE

DIFF-POS LACK #ONE If residual is positive transmit one
SACL D,O
ZALS Q,0

UPDATE ADD Y,0 Combine quantized first residual
SACH El, 0
ADD X, 0 Compute reconstructed speech and

store it
OUT R, RAM-PORT-1
IN RT, RAM-PORT-2

ZALS BYTE-COUNTER,O Pack residual bit stream
SUB ONE, 0
SACL BYTE-COUNTER
BLEZ NEW-OUT-BYTE
ZALS RESIDUAL-BYTE, I
ADD D, 16
B GO-ON

NEW ZALS D-OUT-PTR,.
TBLW RESIDUAL-BYTE
ADD ONE, 0
SACL D-OUT-PTR,-
ZALS D,.
SACL RESIDUAL-BYTE
LACK #16
SACL BYTE-COUNTER,"

GO-ON ZALS COUNTER,"
SUB ONE,0
SACL COUNTER, 16
BGEZ LOOP-I

L
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APPENDIX IX

RECEIVER LOOP

Assumes residual input is packed in 16-bit words in external RAM.
It is accessed using TBLR. Synthesized speech is stored in a circular
buffer in external RAM. This buffer is accessed via the external I/0
Ports.

7 LACK #N Initialize a loop counter
SACL COUNTER,O
LACK #D-IN-ADDR Initialize pointer to input residual
SACL D-IN-PTR,0
ZALS FOUR
SACL ACCESS-CTR-WD,0 Initialize external memory interface
CALL EXT-MEM-INIT for Read/Write mode
ZAC Initialize counter for parallel
SACL BYTE-COUNTER to serial conversion of input residual

IP-i ZALS BYTE-COUNTER Obtain quantized input residual
BNEZ SHIFT from 16-bit residual word
ZALS D-IN-PTR

TBLR RESIDUAL-BYTE ,0
ADD ONE,-
SACL D-IN-PTR

LACK #16
SACL BYTE-COUNTER,0

.FT ZALS RESIDUAL-BYTE,I Current residual value is high order
SACL RESIDUAL-BYTE,O bit of residual-byte
SACH P,0
ZALS BYTE-COUNTER, 0
SUB ONE,-
SACL BYTE-COUNTER, 0

LT Q Scale variance of residual
MPY D
ZAC
APAC
ADD Y,0 Add in spectral prediction
SACH E,O put result on spectral pred.
ADD X,0 filter state space
SACH S-HAT,O Store reconstructed speech
OUT S-HAT, RAM-PORT-I in circular buffer
LARK ARO,#A-ADDR Compute next spectral prediction
LARK ARI, #E-ADDR value

LT *-,APJ
MPY *-,A""
ZAC
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APPENDIX IX (continued)

LTD #-,ARI
MPY
BNAC LOOP-2
SACH Y,

IN ST-HAT Compute next pitch prediction
LT ALPHA
MPY ST-HAT
ZAC
APAC

SACH X,0
ZALS COUNTER,O
SUB ONE,$
SACL COUNTER,O
BNEZ LOOP-i
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APPENDIX X

ADDA A/D-D/A SERVICE ROUTINE INVOKED BY

INTERRUPT FROM A/D CLOCK

* A/D portion

AD IN SN, ADC Input speech from ADC Register
ZALS SN, 0 Pre-emphasis
LT OLDSN
MPYK PRE-FAC
SPAC p
SACL TEMP,O Store preemphasized speech temp.
ZALS S-IN-PTR,0 Load pointer to input speech buffer
TBLW TEMP Write out preemphasized speech in buffer
ADD ONE,0 increment pointer
SACL S-IN-PTR,0
ZALS SN,O delay sin]
SACL OLDSN

* D/A Portion
* ZALS S-OUT-PTR-1,0 Retrieve pntr to output speech buffer

TBLR YN Real in processed speech sample
ADD ONE,0 Increment pointer
SACL S-OUT-PTR-1,6 Re-store pointer
ZALS YN Do De-emphasis
LT OLD SHATN
MPYK PRE-FAC
APAC
SACL OLD SHATN,O Delay output speech sample
OUT OLD-SHATN,DAC Output speech sample

* Check for end of buffer. If the end, switch speech buffers.
* This is done by switching pointers.

ZALS S-PTR-I,0 Check for end of Data
SUB S-OUT-END,"
BGZ DONE
ZALS S-OUT-PTR-1,0 Toggle bit 8, switching from page
XOR H'100 5 to 6 (and vice versa)
SACL S-OUT-PTR-1,_
ZALS S-OUT- PTR-Z ,0
XOR H'100
SACL S-AT-PTR-2

DONE RET Return from interrupt
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